Chemistry Practice Quiz:	Empirical & Molecular Formulas
--------------------------	---

Niama	
Name_	

- 1. Determine the percent composition of each of the following compounds.
 - a. manganese oxide (MnO)
 - b. propanol (C3H8O)
 - c. calcium phosphate (Ca3(PO4)2)
- M. M. W. Michael Sp. 1999 2. Determine the empirical formula for a sample of a compound having the following percent composition 94.07% sulfur and 5.93% hydrogen

3. Determine the empirical formula for a sample of a compound having the following percent composition 80.68% mercury, 12.87% oxygen, and 6.45% sulfur

4. Caffeine is a compound found in natural coffees and teas and in some colas. Determine the empirical and molecular formula for caffeine, using the following composition: 49.47% carbon, 28.85% nitrogen, 16.48% oxygen, and 5.20% hydrogen. The molar mass of caffeine is 194.19 g/mol.

Chemistry Practice Quiz	Empirical	& Molecular	Formulas
-------------------------	-----------	-------------	----------

N 4		
Name		

1. Determine the percent composition of each of the following compounds.

a. manganese oxide (MnO)

77.45% Mn +22.55% ()

b. propanol (C3H8O)

59.94% C, 13.44% H 26.67% O

c. calcium phosphate (Ca3(PO4)2)

38,76% Ca 1997% P 41.27% O

2. Determine the empirical formula for a sample of a compound having the following percent composition 94.07% sulfur and 5.93% hydrogen

3. Determine the empirical formula for a sample of a compound having the following percent composition 80.68% mercury, 12.87% oxygen, and 6.45% sulfur

4. Caffeine is a compound found in natural coffees and teas and in some colas. Determine the empirical and molecular formula for caffeine, using the following composition: 49.47% carbon, 28.85% nitrogen, 16.48% oxygen, and 5.20% hydrogen. The molar mass of caffeine is 194.19 g/mol-

Cy H₅ N₂ O = Empirical

Cy H₅ N₂ O₂ = Molecular

#75 Mg 504 - 7420